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If an initial frame of vectors {ei} is related to a final frame of vectors {𝑓i} by, in
geometric algebra (GA) terms, a rotor, or in linear algebra terms, an orthogonal
transformation, we often want to find this rotor given the initial and final sets
of vectors. One very common example is finding a rotor or orthogonal matrix
representing rotation, given knowledge of initial and transformed points.
In this paper, we discuss methods in the literature for recovering such rotors
and then outline a GA method, which generalises to cases of any signature
and any dimension, and which is not restricted to orthonormal sets of vectors.
The proof of this technique is both concise and elegant and uses the concept
of characteristic multivectors as discussed in the book by Hestenes and Sobczyk,
which contains a treatment of linear algebra using geometric algebra. Expressing
orthogonal transformations as rotors, enables us to create fractional transfor-
mations and we discuss this for some classic transforms. In real applications,
our initial and/or final sets of vectors will be noisy. We show how to use the
characteristic multivector method to find a ‘best fit’ rotor between these sets and
compare our results with other methods.
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1 INTRODUCTION

In a Geometric Algebra approach, orthogonal transformations are carried out via rotors, R, which act two-sidedly on
general objects, M, within the algebra via M → RMR̃. Often we want to be able to determine R given initial and final
information about a frame of vectors which has been subject to the transformation. Specifically, given an initial frame of
vectors {ei} and a final frame {𝑓i} that we know to be related via 𝑓i = ReiR̃, we would like to recover the rotor R. Results for
this in 3D Euclidean space and 4D spacetime have been known about for some years (Hestenes & Sobcyzk1 and Doran and
Lasenby2), but recently, Shirokov3 has given a general result which in principle can be used to find R from a knowledge of
{ei} and {𝑓i} in any dimension and any signature of metric. This is however, subject to some caveats: firstly, as presented,
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2 LASENBY ET AL.

it assumes the {ei} form a standard orthonormal set. In fact, it should be possible to recover R for any starting set of
vectors, as long as they span the complete space. Secondly, the proof given by Shirokov3 is several pages long and quite
detailed, relying on aspects of matrix algebra that are somewhat extraneous to a ‘pure GA’ approach. In this paper, we
will present a GA proof of the main result which can be carried out in just a few lines, and also immediately generalises
to non-orthonormal frames of vectors. For these reasons, it is useful to re-examine the important result in Shirokov3 from
a pure GA point of view, in order to provide a much shorter proof of a more general result. Furthermore, in the process
of doing this, we will find some very interesting connections with some topics in a Geometric Algebra approach to linear
algebra, which have been pioneered and drawn attention to by David Hestenes1 but which have gained little visibility as
yet, despite being potentially very important. This concerns the subject of characteristic multivectors and their associated
use in a GA version of the Cayley–Hamilton theorem. We shall see that our reformulation of the result in Shirokov3 brings
in both of these elements in interesting ways, pointing towards yet further generalisation.

Given that all Lie Groups can be represented in a rotor formulation (Doran et al.4) and that the concept of an ‘initial
state’ being mapped to a ‘final state’ is ubiquitous in both classical and quantum physics, as well as in engineering, the
range of application of formulas such as we discuss here is potentially very wide. However, in this paper, we illustrate the
results we have found in just two example applications, which are the notion of orthogonal transforms in signal processing,
where we will look at a rotor formulation of the Haar transform and the 4 × 4 discrete cosine transform (DCT), and
the concept of finding the closest orthogonal transform to a given non-orthogonal transform. As well as achieving this
aim, of finding an underlying rotor structure for the transform, the approach taken here allows novel concepts such as
‘fractional’ transforms, or indeed continuous interpolation between classic transform states. Such an approach would
obviously generalise to other families of orthogonal wavelet transforms as well, again raising interesting possibilities for
future work.

This paper will be structured as follows. Section 2 will describe the concept of characteristic multivectors as given in
Hestenes and Sobczyk1 and their relation to the characteristic polynomial and the Cayley Hamilton theorem. Section 3 will
then give the result and proof of how we construct a rotor relating a frame and its transform from these characteristic
multivectors. We will start by assuming orthogonal frames and then generalise to non-orthogonal frames. Section 4 will
consider comparisons between this method and other results in the literature. Section 5 will look at applications of our
method to classical orthogonal transforms used ubiquitously in image processing and at how it also provides a method
for straightforwardly obtaining the ‘closest’ orthogonal transform to a transform that is assumed to have been formed by
noise added to an underlying orthogonal transform.

2 CHARACTERISTIC MULTIVECTORS

Characteristic multivectors were introduced in Chapter 3 of Hestenes and Sobczyk.1 They generalise the information
about linear functions that ordinary matrix algebra provides in the form of the ‘trace’ and ‘determinant’ of a matrix, to a set
of further quantities which are also invariant under change of basis. As we shall briefly describe below, the scalar parts of
these quantities figure in the Cayley–Hamilton Theorem and in the ‘characteristic polynomial’ for a linear function, and
hence have been in effective use for a long time. However, the full characteristic multivectors consist of all even grades
up to the largest even grade in the space, and hence potentially carry a good deal more information than just the scalar
parts which have been used up to now.

We will define them here using the notion of simplicial derivatives, which are defined in Chapter 2 of Hestenes and
Sobczyk.1 These are generalisations of the vector derivative, 𝜕c, which, for a vector c and a basis {ei} (with reciprocal frame
{ei}), can be defined as

𝜕c = ei 𝜕

𝜕ci with c = ciei

with sum over repeated indices assumed here and throughout unless otherwise stated. This definition is prototypical of
all the derivatives we will define here, in that it is independent of the basis used in its definition. If we instead used a
frame {𝑓𝑗}, with reciprocal frame {𝑓𝑗}, and chose to write the components of c via c = c𝑗𝑓𝑗 , then we would find

𝜕c = ei 𝜕

𝜕ci = 𝑓𝑗 𝜕

𝜕c𝑗

This frame-independence extends to the simplicial derivatives we now define, and although many of the definitions below
could be stated in terms of the combinatorics of products of frame elements, we find it helpful to motivate their original
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LASENBY ET AL. 3

definitions in terms of derivatives, the geometrical nature of which is clear. Once one has these initial definitions in place,
one can then proceed to a representation in terms of explicit frames, which need not be orthonormal. For example, for
the vector derivative just discussed, we can note the identity of any of the forms

𝜕c … c = ei … ei = ei … ei = 𝑓 i … 𝑓i = 𝑓i … 𝑓 i

where the dots represent the quantities sandwiched in the implied sums.
Note finally, in terms of preliminaries, that in what follows juxtaposition represents the geometric product between

quantities in the algebra, and that inner, outer and scalar products take precedence, in terms of ordering, over geometric
products.

So suppose we have a set of linearly independent vectors v1, v2, . … , vp, which live in an m-dimensional space. We
define a simplicial variable v(p) = v1 ∧ v2 ∧ … ∧ vp and a simplicial derivative 𝜕(p) relative to this simplicial variable as

𝜕(p) =
1
p!
(𝜕vp ∧ … ∧ 𝜕v1 ) (1)

Here, for each 𝜕vi in the product, we are using the concept of the vector derivative, as defined above. Now, if 𝑓 is a
vector-valued linear function of a vector a living in an m-dimensional space, Vm, and the output 𝑓 (a) lives in the same
space (the simplest case) then we can define the rth simplicial derivative of 𝑓 as follows.

We let {a𝑗}, 𝑗 = 1, … ,m be a frame for the space and {a𝑗} its reciprocal frame. We then look at sets of simplicial
variables, a(r) = a𝑗1∧…∧a𝑗r , where 0 < 𝑗1 < … < 𝑗r ≤ m. The rth simplicial derivative of𝑓(r) = 𝑓 (a𝑗1 )∧𝑓 (a𝑗2)∧…∧𝑓 (a𝑗r ),
is then (with no sum over repeated indices)

𝜕(r)𝑓(r) =
1
r!

(
𝜕a𝑗r

∧ … ∧ 𝜕a𝑗1

) (
𝑓 (a𝑗1) ∧ … ∧ 𝑓 (a𝑗r )

)
(2)

The derivative form of this expression tells us that the resulting objects will not depend on whether the frame {ak}
is orthonormal, or even orthogonal, and that the definitions will work in non-Euclidean signatures, since (as long as
reciprocal frames can be defined), this aspect is taken care of in the definition of the vector derivative.

Nevertheless, for practical computations, it is useful to expand the 𝜕a𝑗i
… a𝑗i combinations using frames in the manner

described above. For clarity, we will first do this using a general frame {ei} and its reciprocal {ei}, to obtain

𝜕(r)𝑓(r) =
1
r!

m∑
i1=1

…
m∑

ir=1

(
eir ∧ … ∧ ei1

) (
𝑓 (ei1 ) ∧ … ∧ 𝑓 (eir )

)
(3)

At this point we can notice that we may as well use the already-given frame {a𝑗} in place of the {ei}, and also impose an
ordering on sub- and superscripts which will remove the 1∕r! factor. Also we will denote b𝑗 = 𝑓 (a𝑗) for 𝑗 = 1, … ,m. Thus
we obtain our final form for this specialised rth simplicial derivative, which we will call the rth characteristic multivector
of the linear function 𝑓 :

𝜕(r)𝑓(r) =
∑

(a𝑗r ∧ … ∧ a𝑗1)(b𝑗1 ∧ … ∧ b𝑗r ) (4)

where the sum is over all sets of r indices such that 0 < 𝑗1 < … < 𝑗r ≤ m. The point about these multivector quantities
is that they provide invariant information about the function 𝑓 . The invariance is in the sense that any frame {a𝑗} could
be chosen, and we would still get the same objects; they are therefore in some sense ‘intrinsic’ to the space Vm and the
function 𝑓 . This is similar to what happens in Lie Group theory, where given a basis set of generators {𝜆i} say, i = 1, … ,n,
if we form the reciprocal basis {𝜆i} then the quadratic combination

C =
n∑

i=1
𝜆i𝜆

i

is a well known invariant for the group, known as the quadratic Casimir invariant, and can be shown to be independent
of the initial choice of basis. Examples of computing the Casimir invariants for the group SU(3) in a geometric algebra
approach are briefly discussed in a companion paper in this collection,5 but we note that it turns out they are not directly
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4 LASENBY ET AL.

equivalent to characteristic multivectors as discussed here, since they only involve a subset of the elements of the space
(viz. the particular bivectors representing the generators).

This completes what we need to say about the definition of characteristic multivectors in a GA context. However, in
order to give further understanding of characteristic multivectors as given in their final form (4), in a context which may
be useful to those approaching Clifford algebras in a more mathematical way, we can note their relation to the exterior
algebra spaces Λr(V), where V is the vector space on which the Clifford algebra is based. These are normally given by
exterior products of orthogonal vectors, and hence for this purpose, we will temporarily restrict the frame {a𝑗} to be
orthogonal.

What we are doing in (4) is forming the extension or outermorphism of the linear function 𝑓 , which initially acts on
single vectors, to act on the element a𝑗1 ∧ … ∧ a𝑗r of Λr(V). We now form the geometric product of this with the further
element of Λr(V) defined by a𝑗r ∧ … ∧a𝑗1 . Such a geometric product can be defined ultimately via a tensor product V ⊗V
quotiented by an ideal expressing the requirement that the action of a quadratic form on a vector yields a scalar. Finally
we take the trace over the corresponding frames and dual frames, to obtain a frame-independent answer.

Some elements of this technique for extracting information from 𝑓 appear in the proposals by Sergei Winitzki for doing
linear algebra in a coordinate independent way using just the exterior algebra,6 and an interesting item for future work will
be to investigate the links between his methods and those of Hestenes and Sobczyk, in the form we have described here.

2.1 The characteristic polynomial and the Cayley–Hamilton theorem
We can now employ the results of the previous section to look at the characteristic polynomial and Cayley–Hamilton
theorem. These use just the scalar parts of the various simplicial derivatives. As shown in Hestenes and Sobczyk1 Section
3-2, the characteristic polynomial C𝑓 (𝜆) of a linear function 𝑓 is given by

C𝑓 (𝜆) =
m∑

s=0
(−𝜆)m−s𝜕(s) ∗ 𝑓(s) (5)

where 𝜕(s) ∗ 𝑓(s) means ‘take the scalar part of the quantity 𝜕(s)𝑓(s)’ and 𝜕(0) ∗ 𝑓(0) is taken as 1. 𝜆 is the scalar argument of
the polynomial function. If 𝜆 is an eigenvalue of 𝑓 , that is, 𝑓 (a) = 𝜆a, then it is a root of the characteristic polynomial,
that is, we will have C𝑓 (𝜆) = 0.

The Cayley–Hamilton theorem states that a linear function satisfies its own characteristic equation, which then tells
us that

m∑
s=0

(−1)m−s𝜕(s) ∗ 𝑓(s)𝑓
m−s(a) = 0 (6)

for any input vector a. 𝑓 (r) is the r-fold application of 𝑓 and 𝑓 (0)(a) is interpreted as a.

3 THE BASIC RESULT FOR RECONSTRUCTING A ROTOR

We now let 𝑓 be a rotor, that is, 𝑓 (a) = RaR̃ where RR̃ = 1. Let us suppose that the set {ai}, i = 1, … n, form an
n-dimensional frame, and bi = 𝑓 (ai) = RaiR̃ are what the ai's are mapped to under 𝑓 .

Theorem 1. Our basic claim is that R̃ is a scalar multiple of the sum of the characteristic multivectors of 𝑓 , that is,

R̃ = 𝛼

n∑
r=0

𝜕(r)𝑓(r) (7)

where 𝛼 is a real scalar, and the 𝜕(r)𝑓(r) are given in terms of the ‘input’ and ‘output’ frames by Equation (4). This holds
in any dimension and signature provided that there are no null basis vectors.
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LASENBY ET AL. 5

Proof. We start with the case where the frames are orthonormal, and write ai = ei, i = 1, … ,n. The sum on the
r.h.s. of (7) is then (again with the sum over the repeated indices restricted by 0 < 𝑗1 < … < 𝑗r ≤ m)

n∑
r=0

∑(
a𝑗r ∧ … ∧ a𝑗1

) (
b𝑗1 ∧ … ∧ b𝑗r

)
=

n∑
r=0

∑(
e𝑗r … e𝑗2 e𝑗1

) (
Re𝑗1 R̃Re𝑗2 R̃ … Re𝑗r R̃

)
=

n∑
r=0

∑
e𝑗r … e𝑗2 e𝑗1 Re𝑗1 e𝑗2 … e𝑗r R̃

=

( n∑
r=0

∑
e𝑗r … e𝑗2 e𝑗1 Re𝑗1 e𝑗2 … e𝑗r

)
R̃

(8)

We will thus have proved the result in (7) if we can show that the double sum within the brackets in the last line of (8)
is just a scalar. If we divide the overall 2n dimensional GA space into vectors, a, bivectors B, trivectors T, quadrivectors
Q, and so on up to Qn say, where n is the dimension of the space, then it is easy to see this quantity is

R + 𝜕aRa + 𝜕BRB + 𝜕TRT + 𝜕QRQ + … + 𝜕Qn RQn (9)

We see that Equation (9) is true from the definition of the differentiation wrt to an r-vector, X = XKeK , where the
{eK} are the basis r-vectors:

𝜕X RX = eJ 𝜕

𝜕XJ RXKeK = eJReJ (10)

which is precisely what the inner sum in (8) gives us. At this stage, it is clear that the rotor nature of R is irrelevant,
and we in fact seek to show that

M + 𝜕aMa + 𝜕BMB + 𝜕TMT + 𝜕QMQ + … + 𝜕Qn MQn (11)

is a scalar for a general even element M, which will then make the LHS of Equation (8) proportional to R̃. We can
make this easier by recognising that what we are now doing is forming a derivative with respect to all 2n independent
elements in the space. In particular, if we write this set of 2n elements symbolically as EJ , J = 1, … ,N, where N = 2n

is the dimension of the entire space, then what we want to show is that, in the usual multivector derivative notation,

𝜕EME = scalar (12)

for any even element M, and E is the set of all {EJ}. This means that we want 𝜕E⟨M⟩rE = 0 for each even grade r > 0
in the space (as this is a reflection which preserves grade). This is easy to establish as follows. Rewriting

𝜕EME =
2n∑

J=1
EJMEJ (13)

we can see that the result we want would follow if each even basis element of the space, apart from the scalar identity,
commutes with N∕2 elements and anticommutes with N∕2. In this case, the sandwiching above would result in
everything cancelling except scalar quantites. This result is not difficult to show for M even, but it is in fact more
general and holds for any element of the space, not just even elements. As this result could be useful in other contexts,
the proof for any element of the space (not just even elements) is given in Appendix A.

The overall result is therefore:

𝜕EME =
2n∑

J=1
EJMEJ = 2n⟨M⟩ (14)

□
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6 LASENBY ET AL.

3.1 An important special case
We can see that an important special case will arise, and the above method will fail to return a rotor, if it happens that
the rotor we are trying to recover has zero scalar part, since then the sum of characteristic bivectors will just return 0.
There is nothing wrong with the above mathematics in this case, it is just that the factor in front on R̃ in the last line of
Equation (8), which we now know to equal 2n⟨R⟩, will be 0, and hence we can't invert it to recover R̃.

As an example of a rotor with zero scalar part, we can consider 180◦ spatial rotations. For example, in Euclidean space,
the rotor R = e1e2 rotates both the e1 and e2 axes by 180◦, whilst leaving the other axes alone, and clearly has no scalar part.

It is also possible to have rotors with neither a scalar nor bivector part. For example, in Euclidean 4D space, the
pseudoscalar I = e1e2e3e4 is a rotor, since it satisfies IĨ = 1. This quantity rotates all four axes by 180◦.

If we have a rotor R with no scalar part, but possessing a non-zero bivector part, then by multiplying it with each basis
bivector Bi in turn, then we must certainly at some point reach a (combined) rotor RBi with a non-zero scalar part. Of
course, if we only have available information about the initial and final frames, and not the rotor itself, then we cannot
explicitly form RBi. However, we can simulate the effect that the Bi would have on the final frame by noting that if Bi = e𝑗ek

say, has negative square, then it will flip the 𝑗th and kth axes by 180◦, and if it has positive square if will flip all the axes
except the 𝑗th and kth ones by 180◦.

This then provides us with an algorithm to deal with the case where we take the sum of characteristic bivectors, as in
the l.h.s. of Equation (8), but find this gives 0. We now form alternative sums, where the signs of the b𝑗 's are flipped in
accordance with the object we are conceptually multiplying the desired rotor R on the right by. As described, there will be
two flips if the object is a negative square bivector, and n − 2 flips for a positive square one. For each such object tried we
can ask if we then get a rotor S for which there is a scalar part. If we do, the process terminates, and if the bivector basis
element concerned was Bi say, we can form the desired R from S by multiplying on the right by B−1

i , since S = BiR.
If we have gone through the entire bivector basis and still not found an S with non-zero scalar part, then we go to the

grade 4 basis elements that could be rotors, and work through these, flipping the signs of the b𝑗 's according to the effects
that sandwiching in this grade 4 element and its reverse would have on the initial {ei} set of basis vectors. If this fails,
then we go to the grade 6 basis elements which could be rotors, and so on.

Unless R is actually 0, then this process must terminate at some point, and we will have succeeded in recovering R.

3.2 Extension to non-orthogonal frames
In Section 3 we made the statement that Equations (7) and (8) (evaluating the simplicial derivatives from the ‘input’ and
‘output’ frames as given in Equation 4) held for any start and end set of frames and in any signature and dimension;
however, in Section 3, we gave a proof using orthogonal frames. We now note that there is nothing in the proof that
specified the signature of the space (provided no basis elements square to zero), and also that it was for any dimension.
Additionally, the important point about the characteristic multivectors of a transformation is that provided the frame {ak}
spans the space, the characteristic multivectors themselves are independent of the choice of frame, and depend just on
the transformation 𝑓 and the space. This means the proof goes through unchanged for non-orthogonal frames. This can
be seen specifically in Equations (9) and (10), where all that matters is that we have the R sandwiched by the frame (and
bivector, trivector … , extensions) and its reciprocal; there is nothing now that requires them to be orthogonal.

4 COMPARISON WITH EXISTING RESULTS

This section will look at some existing results for recovering rotors from initial and final frames, in particular, the results in
Shirokov.3 Note, in this section we again adopt the Einstein summation convention for clarity, such that repeated indices
are summed over.

4.1 Rotors in Euclidean 3D
If we have a frame (not necessarily orthogonal) {ei} in 3D Euclidean space which is rotated by a rotor R to a frame {𝑓i}
(so that 𝑓i = ReiR̃), it is well known that we recover the rotor via the following simple expression:

R = 𝛽(1 + 𝑓i ei) (15)

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8811 by C

am
bridge U

niversity L
ibrary Journals C

o-O
rdination Schem

e, W
iley O

nline L
ibrary on [22/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LASENBY ET AL. 7

where the constant 𝛽 ensures that RR̃ = 1. This is undoubtedly the simplest form for recovering the required rotation.
This result first appeared in Hestenes and Sobczyk1 and can also be found in Doran and Lasenby.2 If we were now to use
our characteristic multivector formula for recovering the rotor, we have:

R̃ ∝ 1 + ei𝑓i +
(

ek ∧ e𝑗
) (

𝑓𝑗 ∧ 𝑓k
)
+
(

e3 ∧ e2 ∧ e1) (𝑓1 ∧ 𝑓2 ∧ 𝑓3) (16)

where i, 𝑗, k = 1, 2, 3 and 𝑗 < k. Initially, this does not look like Equation (15), but in fact, it is not difficult to show that
they are equivalent. Take one of the bivector-bivector terms, say(

e2 ∧ e1) (𝑓1 ∧ 𝑓2)

Recall that in 3D Euclidean space the reciprocal frame vectors take the following form:

e1 = e2 ∧ e3E−1
3 , e2 = −e1 ∧ e3E−1

3 , e3 = e1 ∧ e2E−1
3 with E3 = e1 ∧ e2 ∧ e3

We are therefore able to write: (
e2 ∧ e1) = Ee3I3 and (𝑓1 ∧ 𝑓2) = −F𝑓 3I3

where I3 is the unit pseudoscalar in Euclidean 3-space and

E =
√
[−(e1 ∧ e2 ∧ e3) · (e1 ∧ e2 ∧ e3)] and F =

√
[−(𝑓1 ∧ 𝑓2 ∧ 𝑓3) · (𝑓1 ∧ 𝑓2 ∧ 𝑓3)] (17)

It can be shown that E = 1∕F, which then leads to(
e2 ∧ e1) (𝑓1 ∧ 𝑓2) = e3𝑓

3

Applying the same logic to the other terms leads us to the conclusion that(
ek ∧ e𝑗

) (
𝑓𝑗 ∧ 𝑓k

)
= ei𝑓

i

We then note that, ei𝑓
i = ei𝑓i, this is true in any space since we can write ei𝑓

i = (eiRei)R̃ ≡ (𝜕aRa)R̃ and ei𝑓i = (eiRei)R̃ ≡

(𝜕aRa)R̃. This therefore tells us that the bivector-bivector term is the same as the vector-vector term.
For the trivector-trivector term we see that(

e3 ∧ e2 ∧ e1) = −
(

e1 ∧ e2 ∧ e3) = ±EI3

and

(𝑓1 ∧ 𝑓2 ∧ 𝑓3) = ∓FI3

where E and F are as given in Equation (17). Therefore, this term is equal to 1, and we hence have a total expression where
R̃ ∝ 1 + ei𝑓i, as expected, which gives the standard result on taking the reverse.

4.2 Rotors in 4D spacetime
Now, again consider a spacetime rotor R such that 𝑓i = ReiR̃, i = 1, .., 4 and the signature of the space is (+,−,−,−). It is
again well known (see Hestenes & Sobczyk1 and Doran & Lasenby2) that the rotor can be recovered by the remarkably
simple formula:

R ∝ 𝑓kek (18)

For our characteristic multivector formula to work we need the bivector-bivector, trivector-trivector and 4-vector - 4-vector
terms to jointly cancel out the scalar term and give a multiple of the vector-vector term. This is indeed exactly what happens;
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8 LASENBY ET AL.

depending on the nature of the rotation, the bivector-bivector and trivector-trivector parts are multiples of the vector-vector
part or multiples of the bivector part of the vector-vector part, while the 4-vector - 4-vector part gives a scalar. Showing this
theoretically is more involved than the calculations in Section 4.1 but follows the same lines of argument.

It is interesting to note that the above relations between terms in our characteristic multivector expression can often be
related via the characteristic polynomial. This will be discussed further elsewhere.

4.3 Formula in Hestenes and Sobcyzk1 for orthogonal transformations
Chapter 3 in Hestenes and Sobczyk1 describes how Linear Algebra is dealt with in GA. Here, we see that if two orthonormal
frames {ek} and {𝑓k} are related by a rotor R, where k = 1, 2, … ,n (𝑓k = RekR̃) and the space is Euclidean, we can write

R = Rn … R2R1 (19)

Here, each Rk is a rotation in an elemental plane so the overall rotor is made up of rotations in orthogonal planes. These
planes can be shown to be the planes formed by the eigen-bivectors (which can also be formed from the complex eigen-
vectors in a standard matrix decomposition). In a later section, we will look specifically at orthogonal transformations
and show how the characteristic multivector approach compares to this plane-wise decomposition. We also note here that
the recent paper by Roelfs and de Keninck7 shows how we can decompose either a rotor R or a bivector B into mutually
commuting simple rotors or simple bivectors respectively.

4.4 Shirokov's formulation
Shirokov3 gives the main result in his equation (6.1). This is that if two orthonormal frames, {ea} and {𝛽a}, are related by
a rotor S, that is,

SeaS̃ = 𝛽a (20)

where a = 1, … ,n, then if

M = 1 + 𝛽aea + … + 𝛽1…ne1…n (21)

is non-zero, then

S = ± M√
M̃M

(22)

Here, the notation 𝛽1… k, k ≤ n, is explained in his equation (2.4), which has the definition

𝛽a1 … ak = 𝛽a1 … 𝛽ak , 1 ≤ a1 < … < ak ≤ n (23)

We should note carefully that in3 the notation for upper multi-indices is such that it is assumed that eA = (eA)−1, which
therefore gives ea1 … ak = (ea1 … ak )

−1 = eak · · · ea1 and not ea1 … eak , (which might be assumed from the way the lumped
downstairs indices work), because eai = (eai)

−1. We thank Dmitry Shirokov for this clarification concerning the notation.
This formula is therefore the same as our formula in Equation (7) for the orthogonal case. As the result is written entirely

in terms of orthogonal frames, it is difficult to extend it to non-orthogonal frames, but does hold for arbitrary signature,
provided no basis vectors square to 0, and arbitrary dimension. Note that we have also given the extension to cases where
M = 0.

5 APPLICATIONS TO ORTHOGONAL TRANSFORMS

In this section we will look at how expressing some conventionally very important orthogonal transforms as rotors; this
will enable us to create some novel linear mappings, such as fractional transformations.

As examples, we will look at the 2× 2 Haar Transform and the 4× 4 Discrete Cosine Transform [DCT]. Both have been
extremely important over the years in image processing and image coding - one reason for their importance is because they
are energy preserving transforms.
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LASENBY ET AL. 9

Recall, a real n × n matrix Q is orthogonal/orthonormal if its rows/columns are orthonormal vectors, so that

QQT = QTQ = I, ⇒ QT = Q−1

where I is the n × n identity matrix and we are working in an nD Euclidean space. Let us look at orthogonal transforms
in two ways:

First: Let an orthogonal basis in this space be {ei}, i = 1, ..,n. The matrix Q will take this set of n basis vectors to a
set of n orthogonal vectors {𝑓i}, where the {𝑓i} are the columns of Q.

Qei = 𝑓i , 𝑓i · 𝑓𝑗 = 𝛿i𝑗

If we are given {ei} and {𝑓i}, we would like to recover the rotor, R which takes {ei} to {𝑓i} [assuming one
exists].

Second: For an n × n matrix, consider each pixel as a dimension. We then act two-sidely (can think of this as acting
on columns and rows sequentially) on an n × n array of pixels, call this X , to produce a transformed block of
pixels Y via

Y = QXQT

(recall, we noted that this is an energy preserving transform: 𝑦T𝑦 = xTx). We can standardly write X as a linear
combination of basis arrays:

X =
∑

Yi𝑗Mi𝑗

where Mi𝑗 = qT
i q𝑗 is an n × n array, and where qi is the ith row of Q.

• Now take Mi𝑗 and unwrap row by row to form a vector—call this mk, with (i, 𝑗) = (1, 1) ⇒ k =
1; (i, 𝑗) = (1, 2) ⇒ k = 2; .. … , (i, 𝑗) = (n,n) ⇒ k = n2.
It is not hard to show that the set {mk} is an orthogonal set if the matrix Q is orthogonal.

• We then look for the rotor which takes the set of pixels, each one being a basis vector, {ek}, k = 1, … ,n2,
to the orthogonal set of vectors {mk}, k = 1, … ,n2.

• In most image processing/coding applications, we learn a lot about the effects of our transforms by
decomposing into basis functions, so this approach may well yield something interesting.

We will now look at some explicit examples.

5.1 Example 1: The 2x2 Haar transform/Haar wavelet
The Haar transform has, over the years, been an important tool in image processing. It is also the simplest form of wavelet
that displays desirable characteristics. The form of the 2 × 2 Haar transform, T, most commonly used is

T = 1√
2

[
1 1
1 −1

]
(24)

Since

Tx = 1√
2

[
1 1
1 −1

] [
x1
x2

]
= 1√

2

[
x1 + x2
x1 − x2

]
we can see that the Haar transform has lowpass and highpass components.

Recall we form the familiar Haar basis functions by taking tT
i t𝑗 , so that

M11 =1
2

[
1 1
1 1

]
M12 = 1

2

[
1 −1
1 −1

]
M21 =1

2

[
1 1
−1 −1

]
M22 = 1

2

[
1 −1
−1 1

]

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8811 by C

am
bridge U

niversity L
ibrary Journals C

o-O
rdination Schem

e, W
iley O

nline L
ibrary on [22/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 LASENBY ET AL.

FIGURE 1 The high- and low-pass basis functions of the 2 × 2 Haar transform

These are illlustrated in Figure 1.
We now look for the 4D rotor R which performs the following mappings (unwrapping row by row):

e1 →
1
2
[e1 + e2 + e3 + e4] e2 →

1
2
[e1 − e2 + e3 − e4]

e3 →
1
2
[e1 + e2 − e3 − e4] e4 →

1
2
[e1 − e2 − e3 + e4]

[note, we could choose to do this unwrapping other ways, for example, column by column].
Using the characteristic multivector formula in 4D (noting that orthogonality implies ei = ei, we have the following

expression for the reverse rotor:

R̃ ∝ 1 + [e1𝑓1 + e2𝑓2....] + [(e2 ∧ e1)(𝑓1 ∧ 𝑓2) + .....]

+ [(e3 ∧ e2 ∧ e1)(𝑓1 ∧ 𝑓2 ∧ 𝑓3) + ....] + [(e4 ∧ e3 ∧ e2 ∧ e1)(𝑓1 ∧ 𝑓2 ∧ 𝑓3 ∧ 𝑓4)]

⇒ R = 1√
2
[e12 + e24 − e13 − e34 + e23]

Note 1: if you apply the formula in Equation (8), you find ⟨R⟩0 = 0: to get around this we can apply a simple rotor to
the 𝑓i s, work out the new rotor and unwrap the simple rotor, as described earlier.

Note 2: if you unwrap the basis function column by column, you get a different rotor, which is related to the above by
a rotor that simply permutes (and in some cases negates) the 𝑓i s.

5.2 Fractional transforms
Having expressed the Haar transform as a rotor, we can now investigate what fractional transforms might look like. The
prescription of generating the fractional rotor is simply to extract the bivector, B, from the rotor, R, and then to create a
rotor R𝛼 from 𝛼B, where 𝛼 ∈ [0, 1]. In order to extract the bivector, we first choose how we wish to express our rotor as a
function of the bivector, for example, exponential, Cayley, outer exponential. Below we give the prescription and examples
using the Cayley form as the inversion is easy to illustrate, but it is likely that the exponential form may produce more
interesting fractional transforms.

• Write the extracted rotor R as a function of B using the Cayley transform and invert to give B in terms of R:

R = 1 − B
1 + B

B = 1 − R
1 + R

• Create a new rotor using 𝛼B, 𝛼 ∈ [0, 1]:

R𝛼 = 1 − 𝛼B
1 + 𝛼B
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LASENBY ET AL. 11

We can now look at the properties of these new transforms generated by the R𝛼 .

Example 1. As a first example, look at 𝛼 = 0.5 in the 2 × 2 Haar transform. Taking 𝑓i = R𝛼eiR̃𝛼 and forming the
orthogonal matrix, F from the 𝑓i s, gives (where we are unwrapping the pixels to form vectors, i.e., Method 2):

F =
⎡⎢⎢⎢⎣

a b + c b − c b
b − c d b + 2c −b + c
b + c b − 2c d −b − c

b −b − c −b + c a

⎤⎥⎥⎥⎦ (25)

with a = 0.68, b = 0.32, c = 0.24
√

2, d = 0.04. If this F now acts on a 2 × 2 block of pixels that we unwrap to give
a vector x = [x1, x2, x3, x4], and we rewrite the resulting vector 𝑦 = Fx as a 2 × 2 block of pixels, we have the following
result:

Fx = x1

[
𝛼 𝛽 − 𝛾

𝛽 + 𝛾 𝛽

]
+ x2

[
𝛽 + 𝛾 𝛿
𝛽 − 2𝛾 −(𝛽 + 𝛾)

]
+ x3

[
𝛽 − 𝛾 𝛽 + 2𝛾
𝛿 −𝛽 + 𝛾

]
+ x4

[
𝛽 −𝛽 + 𝛾

−(𝛽 + 𝛾) 𝛼

]
(26)

These new basis elements are shown in Figure 2.

Example 2. As our next example we look at the 4× 4 Discrete Cosine Transform (DCT)
The 4×4 DCT is the basis of the compression standard JPEG XR. The transform matrix, TDCT , is standardly given by

TDCT =

⎡⎢⎢⎢⎢⎢⎣

1
2

1
2

1
2

1
2√

(2)
2

cos
(

𝜋

8

) √
(2)
2

cos
(

3𝜋
8

)
−

√
(2)
2

cos
(

3𝜋
8

)
−

√
(2)
2

cos
(

𝜋

8

)
1
2

− 1
2

− 1
2

1
2√

(2)
2

cos
(

3𝜋
8

)
−

√
(2)
2

cos
(

𝜋

8

) √
(2)
2

cos
(

𝜋

8

)
−

√
(2)
2

cos
(

3𝜋
8

)
⎤⎥⎥⎥⎥⎥⎦

(27)

The basis functions/arrays of TDCT are shown in the left image of Figure 3; we have 16 4 × 4 basis arrays, which
show increasing horizontal and vertical frequencies as we move from the top left to the bottom right. The application
of the 4 × 4 DCT to the Lenna image is shown in the right image of Figure 3 (reordered to view low-low frequency
components at the top left and high-high frequency components at the bottom right).

Here, we will use Method 1 to look for the rotor which takes an orthogonal 4D Euclidean frame {ei} to {𝑓i}, where the
{𝑓i} are the columns of the DCT. To do this we will use the method of characteristic multivectors to give

R̃ ∝ 1 + [e1𝑓1 + e2𝑓2....] + [(e2 ∧ e1)(𝑓1 ∧ 𝑓2) + .....] + [(e3 ∧ e2 ∧ e1)(𝑓1 ∧ 𝑓2 ∧ 𝑓3) + ....]

+ [(e4 ∧ e3 ∧ e2 ∧ e1)(𝑓1 ∧ 𝑓2 ∧ 𝑓3 ∧ 𝑓4)]

FIGURE 2 The basis functions for the 𝛼 = 0.5 fractional Haar transform
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12 LASENBY ET AL.

FIGURE 3 Left: The 16 basis functions of the
4 × 4 DCT. Right: The 4 × 4 DCT applied to the
Lenna image

The numerical values are given below; they work out nicely since ⟨R⟩0 ≠ 0 so no small extra rotor applied to the {𝑓i} is
needed:

R̃ ∝ 1 + [−0.153(e1e2) + 0.229(e1e4) + 0.229(e2e3) − 0.153(e3e4)]

+ [0.0761(e1e2e3e4) − 0.0761(e1e4) − 0.383(e3e4) − 0.383(e2e4)

+ 0.383(e1e2) − 0.383(e1e3) + 0.076(e2e3) − 1.924]

+ [−0.153(e1e2) + 0.229(e1e4) + 0.229(e2e3) − 0.153(e3e4)] + 1

which simplifies (when normalised) to

R̃ = 0.069 − 0.069(e1e2) − 0.347(e1e4) − 0.485(e2e3)

+ 0.625(e3e4) + 0.347(e2e4) + 0.347(e1e3) + 0.069(e1e2e3e4)

It is then easy to show (which must follow as the characteristic multivectors are invariants) that

R(Invk)R̃ = Invk, k = 1, 2, 3, 4

The interesting invariant is Inv1 (≡ Inv3):

−0.153[(e1e2) + (e3e4)] + 0.229[(e1e4) + (e2e3)]

which is clearly an eigen-bivector but not an eigenblade. As noted in Section 4.3, orthogonal transformations can be
written as a composition of rotors which represent rotations in orthogonal planes, Hestenes and Sobczyk1 also showed
how these relate to the complex eigenvalues/vectors of the matrix.

For the 4 × 4 DCT we have 4 complex eigenvalues and 4 complex eigenvectors. Take the two which are not just
congjugates:

v1 = p1 + iq1 ≡ [0.613, 0.237, 0.206, 0.159] + i[0,−0.512, 0.285, 0.396]

v2 = p2 + iq2 ≡ [−0.206, 0.159, 0.613,−0.237] + i[0.285,−0.396, 0,−0.512]

These result in the following eigen-bivectors:

B1 = p1 ∧ q1 and B2 = p2 ∧ q2

where B1 and B2 commute. It is then not hard to show that

Inv1 ∝ (B1 + B2)
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LASENBY ET AL. 13

FIGURE 4 The basis functions for (from left to right) the fractional 4 × 4 DCT with 𝛼 = 0.1, 0.5, 0.7

Therefore the sum of the commuting blades which are the eigenblades gives the eigen-bivector formed via the characteristic
multivectors. An alternative approach would be to take the B formed from the R and split it into commuting blades via,
for example, techniques outlined in Roelfs and de Keninck.7

Having expressed the DCT as a rotor, we can again investigate what fractional transforms look like by following the
procedure below (again, while we use the Cayley transform here, other functions of the bivector can be used):

• Use the Cayley transform to find B given R:

R = 1 − B
1 + B

B = 1 − R
1 + R

• Create a new rotor using 𝛼B, 𝛼 ∈ [0, 1]:

R𝛼 = 1 − 𝛼B
1 + 𝛼B

Figure 4 shows the basis functions for three fractional DCTs: 𝛼 = 0.1, 0.5, 0.7. As expected, for 𝛼 = 0.1 each basis
function is approx a delta function at a given pixel, while the other basis functions are more difficult to interpret, but are
moving more towards the case of 𝛼 = 1 shown in Figure 3.

What uses might we put such fractional transforms to? One possibility is, for a given image, to compress using a trans-
form optimised for that particular image; the decoder would only need to know one extra scalar, 𝛼. However, finding an
optimal 𝛼 would perhaps be difficult (it would perhaps need to be learned!).

6 FORMING THE ‘CLOSEST’ ORTHOGONAL TRANSFORM

One common task which occurs in a number of fields (e.g., computer vision, molecular dynamics, robotics etc.) is to
find, given noisy sets of vectors (which span the space), the rotor which takes one to another. Another version of this
(which can be viewed as having noise only on the target set of vectors) is to find the ‘closest’ orthogonal matrix to a given
non-orthogonal matrix.

This problem has been addressed multiple times in the literature Kabsch,8 Horn et al,9 Lasenby et al,10 Wu et al,11

and in this volume the problem has also been approached from a particular decomposition viewpoint by Sarabandi and
Thomas12 (also to appear in this volume—citation when available).

Given two sets of noisy vectors, {ei} and {𝑓i}, (or one set of vectors mapping to another set of vectors with added noise)
where the true (no-noise) vectors are related via an underlying rotor, can we use the characteristic multivector formula
directly (with the noisy vectors) to get the closest [in some sense] orthogonal transform/rotor relating the sets? Using
the characterisic multivector formula will produce a rotor for Euclidean signatures (this will be shown elsewhere, but it
is easy to verify symbolically for a given dimension), but how does this rotor relate to, for example, the rotor produced
by the standard SVD formula, which we know should be optimal under Gausssian noise (as it satisfies the least squares
criterion)?
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14 LASENBY ET AL.

Here, we present a preliminary investigation of this (a more in-depth study will be presented elsewhere) by asking
the following question: given a 4 × 4 matrix, M, find the rotor relating {ei}, i = 1, .., 4 to {𝑓i}, i = 1, .., 4, which are the
(non-orthogonal) columns of M via

R̃ ∝ 1 + [e1𝑓1 + e2𝑓2....] + [(e2 ∧ e1)(𝑓1 ∧ 𝑓2) + .....] + [(e3 ∧ e2 ∧ e1)(𝑓1 ∧ 𝑓2 ∧ 𝑓3) + ....]

+ [(e4 ∧ e3 ∧ e2 ∧ e1)(𝑓1 ∧ 𝑓2 ∧ 𝑓3 ∧ 𝑓4)]

(always give a valid rotor) and investigate the nature of this rotor. For a given rotor R, our simulations will add both
uniform and Gaussian noise to the vectors {𝑓i} where 𝑓i = ReiR̃ (adding noise to each of the components of the vector)
and will then compare the recovered rotor to R.

6.1 Some preliminary results
In this section we will compare the standard Singular Value Decomposition (SVD) method for finding the ‘optimal’ rotor
between two sets of vectors, with the Characteristic Multivector (CM) described in earlier sections. This will be done for the
4D case and for the case of an orthogonal set {ei} mapping to a non-orthogonal set, {𝑓i}, which is equivalent to finding the
closest orthogonal matrix to a given non-orthogonal matrix (so that its columns are the {𝑓i}). Following the presentation
of results by Sarabandi and Thomas,12 and in order to compare with their findings at some later stage, the generation of
the 4 × 4 orthogonal matrices to which noise is added follows the same procedure of doing this via sampling points on a
4-sphere (see below).

Using double precision arithmetic, we repeat the procedure outlined below for both uniform and Gaussian noise. For
the uniform case, additive noise is taken from a uniform distribution in the interval [−a, a] with a in the interval [0, 0.1]
with 100 intermediate noise levels. For the Gaussian case, additive noise is taken from a normal distribution with zero
mean and standard deviation 𝜎, where again 𝜎 takes 100 evenly spaced values between 0 and 0.1. The simulation then
proceeds as follows:

1. Generate two sets of 100 quaternions, qr and ql using the ‘Method of choosing a point on the 4-sphere’ as presented in
Marsaglia.13 This method chooses a point according to a uniform distribution on the surface of the unit 4-sphere.

2. Any 4D rotation (orthogonal) matrix can be written as a commutative product of two orthogonal matrices (see
Cayley14 and Kim & Rote15). In geometric algebra terms, this involves splitting the bivector, B (such that, for example,
the rotor R corresponding to the rotation, can be written as exp B) into commuting blades, B1 and B2 (B = B1 + B2),
so that our two commuting rotors are exp B1 and exp B2. In matrix terms, this can be done by decomposing into
right- and left-isoclinic matrices as in Kim and Rote.15 Since each of these commuting rotors or right- and left-isoclinic
matrices can be written as quaternions, it can also be said that any 4D rotation can be represented by a pair of
quaternions or a double quaternion.

These double quaternions are then converted to 4D rotation matrices: create the 4D rotation matrix by writing it
as a Van Elfrinkhof matrix (Elfrinkhof,16 Sarabandi et al17).

3. Add uniform/Gaussian distributed noise to each element of the 4D rotation matrices generated.
4. Compute the 4D ‘nearest’ rotation matrices using both the MATLAB18 in-built function for SVD and the CM method.

This is done using double precision arithmetic for both methods. For the rotor obtained from the CM method, also
convert to a rotation matrix.

5. Compute the maximum and the average squared Frobenius norm of the difference between the rotation matrices
without noise, and the obtained nearest rotation matrices from the SVD and CM, respectively. The Frobenius
norm is

||A||F =

√√√√ N∑
i=1

N∑
j=1

a2
ij (28)

where aij is the i𝑗th element of the matrix, and N is the matrix size, 4 in this case.
6. Compute the maximum and the average orthogonality error obtained using the nearest rotation matrices from the

SVD and CM methods; if R or R is the original rotor/rotation matrix, and R∗ or R∗ is the estimated rotor/rotation
matrix, the orthogonality error is given by

||RR̃∗ − 1||F or ||RR∗T − I||F (29)
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LASENBY ET AL. 15

FIGURE 5 The maximimum (left) and mean (right) Frobenius norm between the original (R) and estimated (R∗) rotation matrices with
the SVD and CM methods (over 100 trials), against noise level. x-coordinate indicates noise is taken from a uniform distribution between
[−x, x] [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 The maximimum (left) and mean (right) orthogonality error between the original (R) and estimated (R∗) rotation matrices
with the SVD and CM methods (over 100 trials), against noise level. x-coordinate indicates noise is taken from a uniform distribution
between [−x, x] [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5 shows the results for uniform noise; both the maximum and mean Frobenius norm (over 100 trials) are shown.
We see that the mean results are very similar, but note that the CM method produces a more variable maximum error for
higher noise levels. However, we see in Figure 6 that the CM method produces a marginally ‘more orthogonal’ rotor, but
also note that here we are looking at machine precision.

Figures 7 and 8 show the equivalent results for Gaussian noise where, again, the SVD produces a marginally better
average Frobenius error while the CM method is marginally more orthogonal.
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16 LASENBY ET AL.

FIGURE 7 The maximimum (left) and mean (right) Frobenius norm between the original (R) and estimated (R∗) rotation matrices with
the SVD and CM methods (over 100 trials), against noise level. x-coordinate indicates noise is taken from a normal distribution with zero
mean and standard deviation x [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 The maximimum (left) and mean (right) orthogonality error between the original (R) and estimated (R∗) rotation matrices
with the SVD and CM methods (over 100 trials), against noise level. x-coordinate indicates noise is taken from a normal distribution with
zero mean and standard deviation x [Colour figure can be viewed at wileyonlinelibrary.com]

We note that if single precision arithmetic is used the errors are significantly higher for the SVD method, but that the
CM method results are affected less. We also note that while we know that the SVD solution is minimising the sum of
the squared differences between points, we do not know what the CM is minimising. We will show in future work that
while the SVD appears to perform better in the noise cases considered above, the CM method appears to be more robust in
cases where the initial point correspondences are unknown, so registration involves estimation of correspondences and
the transformation.
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LASENBY ET AL. 17

7 CONCLUSIONS

As stated in the introduction, this paper was inspired by the work of Shirokov3 who essentially gave the rotor formula
in Equation 7 for restricted cases; our aim was to give a more general formulation (one that works for non-orthogonal
frames and general non-degenerate signatures), and a proof that required only a knowledge of basic geometric algebra.
We also took inspiration from the work of Sarabandi et al12 for an investigation into what the nature of the characteristic
multivector sum is when the start and end vectors are not related by a rotor.

Given any set of frame vectors {ei} (working in any dimension and any signature, provided no basis vector is null) and a
set of frame vectors {𝑓i} which are related to the original frame via a rotor R, ie 𝑓i = ReiR̃, we have shown how to recover
R via a closed form expression (Equation 7). Expressing orthogonal transformations as rotors provides us with a variety
of possibilities, such as defining fractional transforms by interpolating the rotor; some illustrative examples are given
for the Haar and DCT transforms. Finally, we note that if the {ei} and {𝑓i} are not related by a rotor, the characteristic
multivector (CM) formula still gives a rotor in the Euclidean case. This rotor appears to be closely related to the UV T (or
VUT) construction obtained from the SVD; in fact, we believe that one possibility is that it is the optimal rotor obtained
when minimising over the difference of all geometric objects not just points. We also show that if we use the CM method
to obtain the ‘closest’ orthogonal matrix to a noisy orthogonal matrix, the CM performs similarly (in terms of Frobenius
norm and orthogonality measure) to the SVD under double precision arithmetic. In more complex cases, for example,
where we do not know point correspondences, it is likely that the CM method will be more robust.

The hope is that now this method has been shown to work in practice and that it is very easily implementable, more
diverse applications will be found.
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APPENDIX A: PROOF OF EQUAL NUMBERS OF COMMUTING AND ANTICOMMUTING
INSTANCES

We aim to show that for each basis element P in the N = 2n space, that is, not just for even grade elements, then P
commutes with N∕2 elements and anticommutes with N∕2. The exceptions are for P being the scalar element, where it
commutes with all others, or for P being the pseudoscalar in a space with odd n, where again it commutes with all others.
Here, when we talk about basis elements, we mean a basis for the whole geometric algebra, for example, in a 3D space,
we would have one scalar, 3 vectors, {ei} (which we assume span the 3D space), 3 bivectors, {ei ∧ e𝑗}, (i, 𝑗 = 1, 2, 3) and
one pseudoscalar, e1 ∧ e2 ∧ e3, giving a total of 23 = 8 basis elements spanning the whole algebra. We do not need the {ei}
to be orthogonal.

We consider pseudoscalars first: if we pass an e𝑗 through I = e1 … en, then in a space with n even, even grade blades
commute with I and odd grade blades anticommute with I. Since there are the same number of even and odd grade blades,
this establishes what we want for the pseudoscalar in such a space.

For a space with n odd, it is easy to see that the pseudoscalar commutes with all elements, as stated above.
So now consider a non-pseudoscalar blade P in the N = 2n space. Since it is not a pseudoscalar, there must be at least

one vector element, e𝑗 say, which is not part of the blade. Now consider the reduction of the overall space to a space in
which none of the elements contain e𝑗 , together with its complement where all the elements contain e𝑗 . Call these spaces
A and B; both A and B have 2n−1 = N∕2 blades and together they make up the whole 2n space. By construction P ∈ A. The
only thing we have to guard against is whether it has now become the pseudoscalar of an odd n space. This could happen
if the original space had an even n and P was of highest odd grade. For the moment, let us suppose this is not the case.
Now suppose that our theorem (that P commutes and anticommutes with an equal number of blades) is true for n − 1;
P must therefore commute with N∕4 elements of A and anticommute with N∕4 elements of A. Call these subsets A(1)

and A(2) respectively. Since P does not contain e𝑗 , then elements of the form e𝑗A(1) will commute with P if P is even, and
anticommute with P if P is odd. Similarly, elements of the form e𝑗A(2) will anticommute with P if P is even, and commute
with P if P is odd. Thus, for P either even or odd, we see that the subset B is divided equally into elements that commute
and anticommute with P. If the theorem is true for n − 1 it is therefore true for n as well.

The only thing to check is what happens if when reducing to the subspace not containing e𝑗 , then P becomes the
pseudoscalar of that space. As we have said, this can only happen if P is odd. In this case, P commutes with all of ‘A’, which
looks very different to above. However, now all elements of the form e𝑗A, that is, all elements of B, will anticommute with
P, since all elements of A commute with with P and e𝑗 anticommutes, since P is odd. Thus the same conclusion is reached,
ie P commutes with N∕2 and anticommutes with N∕2 elements in the 2n space, although it happens in a different way in
this case.

It is trivially true for r = 2 since vectors (e1, e2) commute with the scalar and pseudoscalar/bivector (e1e2) elements
and anticommutes with the vectors, while the bivector commutes with the bivector element and anticommutes with the
vectors; thus, we have things commuting with 2 elements and anticommuting with 2 elements of the space. If it is true
for r = 2 it is then true for all r.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8811 by C

am
bridge U

niversity L
ibrary Journals C

o-O
rdination Schem

e, W
iley O

nline L
ibrary on [22/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://drops.dagstuhl.de/opus/volltexte/2016/5940
info:doi/10.1002/mma.8811

	Reconstructing a rotor from initial and final frames using characteristic multivectors: With applications in orthogonal transformations
	Abstract
	1 INTRODUCTION
	2 CHARACTERISTIC MULTIVECTORS
	2.1. The characteristic polynomial and the Cayley–Hamilton theorem

	3 THE BASIC RESULT FOR RECONSTRUCTING A ROTOR
	3.1. An important special case
	3.2. Extension to non-orthogonal frames

	4 COMPARISON WITH EXISTING RESULTS
	4.1. Rotors in Euclidean 3D
	4.2. Rotors in 4D spacetime
	4.3. Formula in Hestenes and Sobcyzk1for orthogonal transformations
	4.4. Shirokovs formulation

	5 APPLICATIONS TO ORTHOGONAL TRANSFORMS
	5.1. Example 1: The 2x2 Haar transform/Haar wavelet
	5.2. Fractional transforms

	6 FORMING THE `CLOSEST' ORTHOGONAL TRANSFORM
	6.1. Some preliminary results

	7 CONCLUSIONS
	REFERENCES
	APPENDIX A : PROOF OF EQUAL NUMBERS OF COMMUTING AND ANTICOMMUTING INSTANCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


