
Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>
DOI: xxx/xxxx

RESEARCH ARTICLE

Reconstructing a Rotor from Initial and Final Frames using
Characteristic Multivectors: with applications in Orthogonal
Transformations

Anthony Lasenby1 | Joan Lasenby2 | Charalampos Matsantonis2

1Kavli Institute of Cosmology, Department
of Physics, University of Cambridge, UK

2Signal Processing & Communications Lab,
Engineering Department, University of
Cambridge, UK

Correspondence
Joan Lasenby, Signal Processing &
Communications Lab, CUED, Trumpington
Street, Cambridge, UK. Email:
jl221@cam.ac.uk

Abstract

If an initial frame of vectors {ei} is related to a final frame of vectors {fi} by, in
geometric algebra (GA) terms, a rotor, or in linear algebra terms, an orthogonal
transformation, we often want to find this rotor given the initial and final sets of
vectors. One very common example is finding a rotor or 4×4 orthogonal matrix rep-
resenting rotation and translation, given knowledge of initial and transformed points.
In this paper we discuss methods in the literature for recovering such rotors and then
outline a GA method which generalises to cases of any signature and any dimension,
and which is not restricted to orthonormal sets of vectors. The proof of this technique
is both concise and elegant and uses the concept of characteristic multivectors as
discussed in the book by Hestenes & Sobczyk, which contains a treatment of linear
algebra using geometric algebra.
Expressing orthogonal transformations as rotors, enables us to create fractional
transformations and we discuss this for some classic transforms. In real applications,
our initial and/or final sets of vectors will be noisy. We show how to use the charac-
teristic multivector method to find a ‘best fit’ rotor between these sets and compare
our results with other methods.
KEYWORDS:
geometric algebra; characteristic multivectors; frame transformations; orthogonal transformations

1 INTRODUCTION

In a Geometric Algebra approach, orthogonal transformations are carried out via rotors, R, which act two-sidedly on general
objects, M , within the algebra via M → RMR̃. Often we want to be able to determine R given initial and final information
about a frame of vectors which has been subject to the transformation. Specifically, given an initial frame of vectors {ei} and
a final frame {fi} that we know to be related via fi = ReiR̃, we would like to recover the rotor R. Results for this in 3D
Euclidean space and 4D spacetime have been known about for some years (Hestenes & Sobcyzk1,Doran & Lasenby2), but
recently Shirokov3 has given a general result which in principle can be used to find R from a knowledge of {ei} and {fi} in any
dimension and any signature of metric. This is however, subject to some caveats: firstly, as presented, it assumes the {ei} form
a standard orthonormal set. In fact, it should be possible to recover R for any starting set of vectors, as long as they span the
complete space. Secondly, the proof given by Shirikov3 is several pages long and quite detailed, relying on aspects of matrix
algebra that are somewhat extraneous to a ‘pure GA’ approach. In this paper we will present a GA proof of the main result which
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can be carried out in just a few lines, and also immediately generalises to non-orthonormal frames of vectors. For these reasons,
it is useful to re-examine the important result in Shirikov3 from a pure GA point of view, in order to provide a much shorter proof
of a more general result. Furthermore, in the process of doing this, we will find some very interesting connections with some
topics in a Geometric Algebra approach to linear algebra which have been pioneered and drawn attention to by David Hestenes1,
but which have gained little visibility as yet, despite being potentially very important. This concerns the subject of characteristic
multivectors and their associated use in a GA version of the Cayley-Hamilton theorem. We shall see that our reformulation of
the result in Shirikov3 brings in both of these elements in interesting ways, pointing towards yet further generalisation.
Given that all Lie Groups can be represented in a rotor formulation Doran et al4, and that the concept of an ‘initial state’

being mapped to a ‘final state’ is ubiquitous in both classical and quantum physics, as well as in engineering, the range of
application of formulas such as we discuss here is potentially very wide. However, in this paper, we illustrate the results we
have found in just two example applications, which are the notion of orthogonal transforms in signal processing, where we will
look at a rotor formulation of the Haar transform and the 4 × 4 discrete cosine transform (DCT), and the concept of finding the
closest orthogonal transform to a given non-orthogonal transform. As well as achieving this aim, of finding an underlying rotor
structure for the transform, the approach taken here allows novel concepts such as ‘fractional’ transforms, or indeed continuous
interpolation between classic transform states. Such an approach would obviously generalise to other families of orthogonal
wavelet transforms as well, again raising interesting possibilities for future work.
This paper will be structured as follows. Section 2 will describe the concept of characteristic multivectors as given in Hestenes

& Sobczyk1 and their relation to the characteristic polynomial and the Cayley Hamilton theorem. Section 3 will then give
the result and proof of how we construct a rotor relating a frame and its transform from these characteristic multivectors. We
will start by assuming orthogonal frames and then generalise to non-orthogonal frames. Section 4 will consider comparisons
between this method and other results in the literature. Section 5 will look at applications of our method to classical orthogonal
transforms used ubiquitously in image processing and at how it also provides a method for straightforwardly obtaining the
‘closest’ orthogonal transform to a transform that is assumed to have been formed by noise added to an underlying orthogonal
transform.

2 CHARACTERISTIC MULTIVECTORS

The essential objects here are the simplicial derivatives. We start by defining the simplicial derivative as described in Hestenes
& Sobczyk1: given a set of linearly independent vectors v1, v2, ...., vp we define a simplicial variable v(p) = v1∧v2∧,…∧vp and
a simplicial derivative )(p) relative to this simplicial variable as:

)(p) =
1
p!
()vp∧…∧)v1) (1)

Now, if f is a vector-valued linear function of a vector a living in an m-dimensional space, Vm, and the output f (a) lives in
the same space (the simplest case) then we can define the rth simplicial derivative of f as follows.
We let {ak}, k = 1,… , m be a frame for the space and {ak} its reciprocal frame; we also define bk = f (ak) for = 1,… , m.

We then look at sets of simplicial variables, a(r) = aj1∧…∧ajr , where 0 < j1 < … < jr ≤ m. The rth simplicial derivative of
f(r) = f (aj1)∧f (aj2)∧…∧f (ajr), is then

)(r)f(r) =
∑

()ajr ∧…∧)aj1 )(f (aj1)∧…∧f (ajr)) (2)
Note we no longer include the 1∕r! factor. But as ak = (ak⋅ak))ak = )ak (no sum over repeated indices), we can write this as:

)(r)f(r) =
∑

(ajr∧…∧aj1)(bj1∧…∧bjr) (3)

where the sum is over all sets of r indices such that 0 < j1 <… < jr ≤ m. The point about these multivector quantities is that
they provide invariant information about the function f . The invariance is in the sense that any frame {ak} could be chosen, and
we would still get the same objects – they are therefore in some sense ‘intrinsic’ to the space Vm and the function f .
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2.1 The Characteristic Polynomial and the Cayley-Hamilton Theorem
We can now employ the results of the previous section to look at the characteristic polynomial and Cayley- Hamilton theorem.
These use just the scalar parts of the various simplicial derivatives. As shown in Hestenes & Sobczyk1 Section 3-2, the
characteristic polynomial Cf (�) of a linear function f is given by:

Cf (�) =
m
∑

s=0
(−�)m−s)(s) ∗ f(s) (4)

where ∗ means ‘take the scalar part of the geometric product’ and )(0) ∗ f(0) is taken as 1. � is the scalar argument of the
polynomial function. If � is an eigenvalue of f , i.e. f (a) = �a, then it is a root of the characteristic polynomial, i.e. we will have
Cf (�) = 0.
The Cayley-Hamilton theorem states that a linear function satisfies its own characteristic equation, which then tells us that

m
∑

s=0
(−�)m−s)(s) ∗ f(s)fm−s(a) = 0 (5)

for any input vector a. f (r) is the r-fold application of f and f (0)(a) is interpreted as a.

2.2 The basic result for reconstructing a rotor
We now let f be a rotor, i.e. f (a) = RaR̃ where RR̃ = 1. Let us suppose that the set {ai}, i = 1,… n, form an n-dimensional
frame, and bi = f (ai) = RaiR̃ are what the ai’s are mapped to under f .
Then our basic claim is that R̃ is a scalar multiple of the sum of the characteristic multivectors of f , i.e.

R̃ = �
n
∑

r=0
)(r)f(r) (6)

where � is a real scalar, and the )(r)f(r) are given in terms of the ‘input’ and ‘output’ frames by equation (3). This holds in any
dimension and signature provided there are no null basis vectors.

2.3 Proof
We start with the case where the frames are orthonormal, and write ai = ei, i = 1,… , n. The sum on the r.h.s. of (6) is then
(again with the sum over the repeated indices restricted by 0 < j1 <… < jr ≤ m)

n
∑

r=0

∑
(

ajr∧…∧aj1
) (

bj1∧…∧bjr
)

=
n
∑

r=0

∑
(

ejr … ej2ej1
) (

Rej1R̃Rej2R̃…RejrR̃
)

=
n
∑

r=0

∑

ejr … ej2ej1Rej1ej2 … ejrR̃

=

( n
∑

r=0

∑

ejr … ej2ej1Rej1ej2 … ejr

)

R̃

(7)

We will thus have proved the result in (6) if we can show that the double sum within the brackets in the last line of (7) is just a
scalar. If we divide the overall 2n dimensional GA space into vectors, a, bivectors B, trivectors T , quadrivectors Q, and so on
up to Qn say, where n is the dimension of the space, then it is easy to see this quantity is

R + )aRa + )BRB + )TRT + )QRQ +…+ )Qn
RQn (8)

We see that equation 8 is true from the definition of the differentiation wrt to an r-vector,X = XKeK , where the {eK} are the
basis r-vectors:

)XRX = eJ )
)XJ RX

KeK = eJReJ
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which is precisely what the inner sum in (7) gives us. At this stage it is clear that the rotor nature of R is irrelevant, and we in
fact seek to show that

M + )aMa + )BMB + )TMT + )QMQ +…+ )Qn
MQn (9)

is a scalar for a general even elementM , which will then make the LHS of equation 7 proportional to R̃. We can make this easier
by recognising that what we are now doing is forming a derivative with respect to all 2n independent elements in the space. In
particular, if we write this set of 2n elements symbolically as Ej , j = 1,… , N , where N = 2n is the dimension of the entire
space, then what we want to show is that, in the usual multivector derivative notation,

)EME = scalar (10)

for any even elementM , and E is the set of all {Ej}. This means that we want )E⟨M⟩rE = 0 for each even grade r > 0 in the
space (as this is a reflection which preserves grade). This is easy to establish as follows. Rewriting

)EME =
2n
∑

j=1
EjMEj (11)

we can see that the result we want would follow if each even basis element of the space, apart from the scalar identity, commutes
with N∕2 elements and anticommutes with N∕2. In this case the sandwiching above would result in everything cancelling
except scalar quantites. This result is not difficult to show forM even, but it is in fact more general and holds for any element
of the space, not just even elements. As this result could be useful in other contexts, the proof for any element of the space (not
just even elements) is given in Appendix A.
The overall result is therefore:

)EME =
2n
∑

j=1
EjMEj = 2n⟨M⟩ (12)

2.4 An important special case
We can see that an important special case will arise, and the above method will fail to return a rotor, if it happens that the rotor
we are trying to recover has zero scalar part, since then the sum of characteristic bivectors will just return 0. There is nothing
wrong with the above mathematics in this case, it is just that the factor in front on R̃ in the last line of equation (7), which we
now know to equal 2n⟨R⟩, will be 0, and hence we can’t invert it to recover R̃.
As an example of a rotor with zero scalar part, we can consider 180◦ spatial rotations. E.g., in Euclidean space, the rotor

R = e1e2 rotates both the e1 and e2 axes by 180◦, whilst leaving the other axes alone, and clearly has no scalar part.
It is also possible to have rotors with neither a scalar nor bivector part. E.g., in Euclidean 4d space the pseudoscalar I =

e1e2e3e4 is a rotor, since it satisfies IĨ = 1. This quantity rotates all four axes by 180◦.
If we have a rotorRwith no scalar part, but possessing a non-zero bivector part, then by multiplying it with each basis bivector

Bi in turn, then we must certainly at some point reach a (combined) rotor RBi with a non-zero scalar part. Of course, if we
only have available information about the initial and final frames, and not the rotor itself, then we cannot explicitly form RBi.
However, we can simulate the effect that theBi would have on the final frame by noting that ifBi = ejek say, has negative square,
then it will flip the j th and kth axes by 180◦, and if it has positive square if will flip all the axes except the j th and kth ones by 180◦.
This then provides us with an algorithm to deal with the case where we take the sum of characteristic bivectors, as in the l.h.s.

of equation (7), but find this gives 0. We now form alternative sums, where the signs of the bj’s are flipped in accordance with
the object we are conceptually multiplying the desired rotor R on the right by. As described, there will be two flips if the object
is a negative square bivector, and n − 2 flips for a positive square one. For each such object tried we can ask if we then get a
rotor S for which there is a scalar part. If we do, the process terminates, and if the bivector basis element concerned was Bi say,
we can form the desired R from S by multiplying on the right by B−1

i , since S = BiR.
If we have gone through the entire bivector basis and still not found an S with non-zero scalar part, then we go to the grade 4

basis elements that could be rotors, and work through these, flipping the signs of the bj’s according to the effects that sandwiching
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in this grade 4 element and its reverse would have on the initial {ei} set of basis vectors. If this fails, then we go to the grade 6
basis elements which could be rotors, and so on.
Unless R is actually 0, then this process must terminate at some point, and we will have succeeded in recovering R.

2.5 Extension to non-orthogonal frames
In Section 2.2 we made the statement that equations 6 and 7 (evaluating the simplicial derivatives from the ‘input’ and ’output’
frames as given in equation 3) held for any start and end set of frames and in any signature and dimension – however, in
Section 2.3 we gave a proof using orthogonal frames. We now note that there is nothing in the proof that specified the signature
of the space (provided no basis elements square to zero), and also that it was for any dimension. Additionally, the important
point about the characteristic multivectors of a transformation is that provided the frame {ak} spans the space, the characteristic
multivectors themselves are independent of the choice of frame, and depend just on the transformation f and the space. This
means the proof goes through unchanged for non-orthogonal frames.

3 COMPARISON WITH EXISTING RESULTS

This section will look at some existing results for recovering rotors from initial and final frames, in particular, the results in
Shirikov3.

3.1 Rotors in Euclidean 3D
If we have a frame (not necessarily orthogonal) {ei} in 3D Euclidean space which is rotated by a rotor R to a frame {fi} (so
that fi = ReiR̃), it is well known that we recover the rotor via the following simple expression:

R = �(1 + fi ei) (13)
where the constant � ensures that RR̃ = 1. This is undoubtedly the simplest form for recovering the required rotation. This

result first appeared in Hestenes& Sobczyk1 and can also be found in Doran&Lasenby2. If wewere now to use our characteristic
multivector formula for recovering the rotor, we have:

R̃ ∝ 1 + ei fi +
(

ek∧ej
) (

fj∧fk
)

+
(

e3∧e2∧e1
) (

f1∧f2∧f3
) (14)

where i, j, k = 1, 2, 3 j ≠ k. Initially this does not look like equation 13, but in fact, it can be shown that the bivector-bivector
term is a multiple of the vector-vector term and the trivector-trivector term is a constant (obvious as both factors are proportional
to the pseudoscalar), and the multiples/constants are such that we obtain R̃ ∝ 1+ eifi, which gives the standard result on taking
the reverse.

3.2 Rotors in 4D Spacetime
Now, again consider a spacetime rotorR such that fi = ReiR̃, i = 1, .., 4 and the signature of the space is (+,−,−,−). It is again
well known (see Hestenes & Sobczyk1,Doran & Lasenby2) that the rotor can be recovered by the remarkably simply formula:

R ∝ fke
k (15)

For our characteristic multivector formula to work we need the bivector-bivector, trivector-trivector and 4-vector - 4-vector
terms to jointly cancel out the scalar term and give a multiple of the vector-vector term. This is indeed exactly what happens –
depending on the nature of the rotation, the bivector-bivector and trivector-trivector parts are multiples of the vector-vector part
or multiples of the bivector part of the vector-vector part, while the 4-vector - 4-vector part gives a scalar.
It is interesting to note that the above relations between terms in our characteristic multivector expression can often be related

via the characteristic polynomial. This will be discussed further elsewhere.
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3.3 Formula in Hestenes & Sobcyzk1 for orthogonal transformations
Chapter 3 in Hestenes & Sobczyk1 describes how Linear Algebra is dealt with in GA. Here we see that if two orthonormal
frames {ek} and {fk} are related by a rotor R, where k = 1, 2, ..., n (fk = RekR̃) and the space is Euclidean, we can write:

R = Rn…R2R1 (16)

Here each Rk is a rotation in an elemental plane – so the overall rotor is made up of rotations in orthogonal planes. These
planes can be shown to be the planes formed by the eigen-bivectors (which can also be formed from the complex eigenvectors
in a standard matrix decomposition). In a later section we will look specifically at orthogonal transformations and show how
the characteristic multivector approach compares to this plane-wise decomposition. We also note here that the recent paper by
Roelfs & de Keninck5 shows how we can decompose either a rotor R or a bivector B into mutually commuting simple rotors or
simple bivectors respectively.

3.4 Shirikov’s formulation
Sirikov3 gives the main result in his equation (6.1). This is that if two orthonormal frames, {ea} and {�a}, are related by a rotor
S, i.e.

SeaS̃ = �a (17)
where a = 1,… , n, then if

M = 1 + �aea +…+ �1…ne
1…n (18)

is non-zero, then
S = ± M

√

M̃M
(19)

Here the notation �1…k, k ≤ n, is explained in his equation (2.4), which has the definition
�a1…ak = �a1 … �ak , 1 ≤ a1 <… < ak ≤ n (20)

We should note carefully that in3 the notation for upper multi-indices is such that it is assumed that eA = (eA)−1, which
therefore gives ea1…ak = (ea1…ak)

−1 = eak ⋯ ea1 and not ea1 … eak , (which might be assumed from the way the lumped downstairs
indices work), because eai = (eai)

−1. We thank Dmitri Shirokov for this clarification concerning the notation.
This formula is therefore the same as our formula in equation 6 for the orthogonal case. As the result is written entirely in

terms of orthogonal frames, it is difficult to extend it to non-orthogonal frames, but does hold for arbitrary signature, provided
no basis vectors square to 0, and arbitrary dimension. Note that we have also given the extension to cases whereM = 0.

4 APPLICATIONS TO ORTHOGONAL TRANSFORMS

In this section we will look at how expressing some conventionally very important orthogonal transforms as rotors; this will
enable us to create some novel linear mappings, such as fractional transformations.
As examples, we will look at the 2 × 2 Haar Transform and the 4 × 4 Discrete Cosine Transform [DCT]. Both have been

extremely important over the years in image processing and image coding - one reason for their importance is because they are
energy preserving transforms.
Recall, a real n × n matrix Q is orthogonal/orthonormal if its rows/columns are orthonormal vectors, so that

QQT = QTQ = I, ⇐⇒ QT = Q−1

where I is the n × n identity matrix and we are working in an nD Euclidean space. Let us look at orthogonal transforms in two
ways
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First: Let an orthogonal basis in this space be {ei}, i = 1, .., n. The matrix Q will take this set of n basis vectors to a set of n
orthogonal vectors {fi}, where the {fi} are the columns of Q.

Qei = fi , fi ⋅ fj = �ij

If we are given {ei} and {fi}, we would like to recover the rotor, R which takes {ei} to {fi} [assuming one exists].
Second: For an n×nmatrix, consider each pixel as a dimension.We then act two-sidely (can think of this as acting on columns

and rows sequentially) on an n × n array of pixels, call this X, to produce a transformed block of pixels Y via:

Y = QXQT

(recall, we noted that this is an energy preserving transform: yT y = xTx). We can standardly write X as a linear combination
of basis arrays:

X =
∑

YijMij

whereMij = qTi qj is an n × n array, and where qi is the ith row of Q.
• Now takeMij and unwrap row by row to form a vector – call this mk, with (i, j) = (1, 1) ⇐⇒ k = 1; (i, j) = (1, 2) ⇐⇒
k = 2; ....., (i, j) = (n, n) ⇐⇒ k = n2.
It is not hard to show that the set {mk} is an orthogonal set if the matrix Q is orthogonal.

• We then look for the rotor which takes the set of pixels, each one being a basis vector, {ek}, k = 1, ..., n2, to the orthogonal
set of vectors {mk}, k = 1, ..., n2.

• In most image processing/coding applications, we learn a lot about the effects of our transforms by decomposing into
basis functions, so this approach may well yield something interesting.

We will now look at some explicit examples.

4.1 Example 1: The 2x2 Haar Transform/Haar Wavelet
The Haar transform has, over the years, been an important tool in image processing. It is also the simplest form of wavelet that
displays desirable characteristics. The form of the 2 × 2 Haar transform, T , most commonly used is:

T = 1
√

2

[

1 1
1 −1

]

(21)
Since

Tx = 1
√

2

[

1 1
1 −1

] [

x1
x2

]

= 1
√

2

[

x1 + x2
x1 − x2

]

we can see that the Haar transform has lowpass and highpass components.
Recall we form the familiar Haar basis functions by taking tTi tj , so that

M11 =
1
2

[

1 1
1 1

]

M12 =
1
2

[

1 −1
1 −1

]

M21 =
1
2

[

1 1
−1 −1

]

M22 =
1
2

[

1 −1
−1 1

]
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FIGURE 1 The high- and low-pass basis functions of the 2 × 2 Haar transform

These are illlustrated in figure 1 below:
We now look for the 4D rotor R which performs the following mappings (unwrapping row by row) :

e1 ←→
1
2
[e1 + e2 + e3 + e4] e2 ←→

1
2
[e1 − e2 + e3 − e4]

e3 ←→
1
2
[e1 + e2 − e3 − e4] e4 ←→

1
2
[e1 − e2 − e3 + e4]

[note, we could choose to do this unwrapping other ways, for example, column by column].
Using the characteristic multivector formula in 4D (noting that orthogonality implies ei = ei, we have the following expression

for the reverse rotor:

R̃ ∝ 1 + [e1f1 + e2f2....] + [(e2∧e1)(f1∧f2) + .....]+
[(e3∧e2∧e1)(f1∧f2∧f3) + ....] + [(e4∧e3∧e2∧e1)(f1∧f2∧f3∧e4)]

⇐⇒ R = 1
√

2

[

e12 + e24 − e13 − e34 + e23
]

Note 1: if you apply the formula in equation 7, you find ⟨R⟩0 = 0: to get around this we can apply a simple rotor to the fis,
work out the new rotor and unwrap the simple rotor, as described earlier.

Note 2: if you unwrap the basis function column by column, you get a different rotor, which is related to the above by a rotor
that simply permutes (and in some cases negates) the fis.

4.2 Fractional Transforms
Having expressed the Haar transform as a rotor, we can now investigate what fractional transforms might look like. The pre-
scription of generating the fractional rotor is simply to extract the bivector, B, from the rotor, R, and then to create a rotor R�
from �B, where � ∈ [0, 1]. In order to extract the bivector we first choose how we wish to express our rotor as a function of the
bivector, e.g. exponential, Cayley, outer exponential. Below we give the prescription and examples using the Cayley form as the
inversion is easy to illustrate, but it is likely that the exponential form may produce more interesting fractional transforms.

• Write the extracted rotor R as a function of B using the Cayley transform and invert to give B in terms of R:
R = 1 − B

1 + B
B = 1 − R

1 + R
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FIGURE 2 The basis functions for the � = 0.5 fractional Haar transform

• Create a new rotor using �B, � ∈ [0, 1]:
R� =

1 − �B
1 + �B

We can now look at the properties of these new transforms generated by the R� .
Example 1: As a first example, look at � = 0.5 in the 2 × 2 Haar transform. Taking fi = R�eiR̃� and forming the orthogonal

matrix, F from the fis, gives (where we are unwrapping the pixels to form vectors, i.e.Method 2):

F =

⎡

⎢

⎢

⎢

⎢

⎣

a b + c b − c b
b − c d b + 2c −b + c
b + c b − 2c d −b − c
b −b − c −b + c a

⎤

⎥

⎥

⎥

⎥

⎦

(22)

with a = 0.68, b = 0.32, c = 0.24
√

2, d = 0.04. If this F now acts on a 2 × 2 block of pixels that we unwrap to give a vector
x = [x1, x2, x3, x4], and we rewrite the resulting vector y = Fx as a 2 × 2 block of pixels, we have the following result:

Fx = x1

[

� � − 
� +  �

]

+ x2

[

� +  �
� − 2 −(� + )

]

+ x3

[

� −  � + 2
� −� + 

]

+ x4

[

� −� + 
−(� + ) �

]

(23)

These new basis elements are shown in figure 2 .

Example 2: As our next example we look at the 4x4 Discrete Cosine Transform (DCT)
The 4 × 4 DCT is the basis of the compression standard JPEG XR. The transform matrix, TDCT , is standardly given by:

TDCT =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
2

1
2

1
2

1
2

√

(2)
2

cos( �
8
)

√

(2)
2

cos( 3�
8
) −

√

(2)
2

cos( 3�
8
) −

√

(2)
2

cos( �
8
)

1
2

− 1
2

− 1
2

1
2

√

(2)
2

cos( 3�
8
) −

√

(2)
2

cos( �
8
)

√

(2)
2

cos( �
8
) −

√

(2)
2

cos( 3�
8
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(24)

The basis functions/arrays of TDCT are shown in the left image of figure 3 – we have 16 4 × 4 basis arrays, which show
increasing horizontal and vertical frequencies as we move from the top left to the bottom right. The application of the 4 × 4
DCT to the Lenna image is shown in the right image of figure 3 (reordered to view low-low frequency components at the top
left and high-high frequency components at the bottom right).
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FIGURE 3 Left: The 16 basis functions of the 4 × 4 DCT. Right: The 4 × 4 DCT applied to the Lenna image.

Here we will use Method 1 to look for the rotor which takes an orthogonal 4D Euclidean frame {ei} to {fi}, where the {fi}
are the columns of the DCT. To do this we will use the method of characteristic multivectors to give:

R̃ ∝ 1 + [e1f1 + e2f2....] + [(e2∧e1)(f1∧f2) + .....]+

[(e3∧e2∧e1)(f1∧f2∧f3) + ....] + [(e4∧e3∧e2∧e1)(f1∧f2∧f3∧e4)]

≡ 1 + Inv1 + Inv2 + Inv3 + Inv4

The numerical values are given below – they work out nicely since ⟨R⟩0 ≠ 0 so no small extra rotor applied to the {fi} is
needed:

R̃ ∝ 1 + [−0.153(e1e2) + 0.229(e1e4) + 0.229(e2e3) − 0.153(e3e4)]+

[0.0761(e1e2e3e4) − 0.0761(e1e4) − 0.383(e3e4) − 0.383(e2e4)+

0.383(e1e2) − 0.383(e1e3) + 0.076(e2e3) − 1.924]+

[−0.153(e1e2) + 0.229(e1e4) + 0.229(e2e3) − 0.153(e3e4)] + 1

which simplifies (when normalised) to:

R̃ = 0.069 − 0.069(e1e2) − 0.347(e1e4) − 0.485(e2e3)+

0.625(e3e4) + 0.347(e2e4) + 0.347(e1e3) + 0.069(e1e2e3e4)

It is then easy to show (which must follow as the characteristic multivectors are invariants) that

R(Invk)R̃ = Invk, k = 1, 2, 3, 4

The interesting invariant is Inv1 (≡ Inv3):

−0.153[(e1e2) + (e3e4)] + 0.229[(e1e4) + (e2e3)]

which is clearly an eigen-bivector but not an eigenblade. As noted in Section 3.3, orthogonal transformations can be written as
a composition of rotors which represent rotations in orthogonal planes, Hestenes & Sobczyk1 also showed how these relate to
the complex eigenvalues/vectors of the matrix.
For the 4 × 4 DCT we have 4 complex eigenvalues and 4 complex eigenvectors. Take the two which are not just congjugates:
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FIGURE 4 The basis functions for (from left to right) the fractional 4 × 4 DCT with � = 0.1, 0.5, 0.7

v1 = p1 + iq1 ≡ [0.613, 0.237, 0.206, 0.159] + i[0,−0.512, 0.285, 0.396]

v2 = p2 + iq2 ≡ [−0.206, 0.159, 0.613,−0.237] + i[0.285,−0.396, 0,−0.512]

These result in the following eigen-bivectors:
B1 = p1∧q1 and B2 = p2∧q2

where B1 and B2 commute. It is then not hard to show that

Inv1 ∝ (B1 + B2)

Therefore the sum of the commuting blades which are the eigenblades gives the eigen-bivector formed via the characteristic
multivectors. An alternative approach would be to take the B formed from the R and split it into commuting blades via, for
example, techniques outlined in Roelfs & de Keninck5.
Having expressed the DCT as a rotor, we can again investigate what fractional transforms look like by following the procedure

below (again, while we use the Cayley transform here, other functions of the bivector can be used):

• Use the Cayley transform to find B given R:
R = 1 − B

1 + B
B = 1 − R

1 + R

• Create a new rotor using �B, � ∈ [0, 1]:

R� =
1 − �B
1 + �B

Figure 4 shows the basis functions for three fractional DCTs: � = 0.1, 0.5, 0.7. As expected, for � = 0.1 each basis function
is approx a delta function at a given pixel, while the other basis functions are more difficult to interpret, but are moving more
towards the case of � = 1 shown in Figure 3 .
What uses might we put such fractional transforms to? One possibility is, for a given image, to compress using a transform

optimised for that particular image – the decoder would only need to know one extra scalar, �. However, finding an optimal �
would perhaps be difficult (it would perhaps need to be learned!).



12 Lasenby ET AL

5 FORMING THE ‘CLOSEST’ ORTHOGONAL TRANSFORM

One common task which occurs in a number of fields (eg computer vision, molecular dynamics, robotics etc.) is to find, given
noisy sets of vectors (which span the space), the rotor which takes one to another. Another version of this (which can be viewed
as having noise only on the target set of vectors) is to find the ‘closest’ orthogonal matrix to a given non-orthogonal matrix.
This problem has been addressed multiple times in the literature Kabsch6,Horn et al7, Lasenby et al8, Wu et al9, and in this

volume the problem has also been approached from a particular decomposition viewpoint by Sarabandi & Thomas10 (also to
appear in this volume – citation when available).
Given two sets of noisy vectors, {ei} and {fi}, (or one set of vectors mapping to another set of vectors with added noise) where

the true (no-noise) vectors are related via an underlying rotor, can we use the characteristic multivector formula directly (with the
noisy vectors) to get the closest [in some sense] orthogonal transform/rotor relating the sets? Using the characterisic multivector
formula will produce a rotor for Euclidean signatures (this will be shown elsewhere, but it is easy to verify symbolically for a
given dimension), but how does this rotor relate to, for example, the rotor produced by the standard SVD formula, which we
know should be optimal under gausssian noise (as it satisfies the least squares criterion)?
Here we present a preliminary investigation of this (a more in-depth study will be presented elsewhere) by asking the following

question: given a 4 × 4 matrix, M , find the rotor relating {ei}, i = 1, .., 4 to {fi}, i = 1, .., 4, which are the (non-orthogonal)
columns ofM via

R̃ ∝ 1 + [e1f1 + e2f2....] + [(e2∧e1)(f1∧f2) + .....]+

[(e3∧e2∧e1)(f1∧f2∧f3) + ....] + [(e4∧e3∧e2∧e1)(f1∧f2∧f3∧e4)]

(always give a valid rotor) and investigate the nature of this rotor. For a given rotor R, our simulations will add both uniform
and gaussian noise to the vectors {f̄i} where f̄i = ReiR̃ (adding noise to each of the components of the vector) and will then
compare the recovered rotor to R.

5.1 Some preliminary results
In this sectionwewill compare the standard Singular ValueDecomposition (SVD)method for finding the ‘optimal’ rotor between
two sets of vectors, with the Characteristic Multivector (CM) described in earlier sections. This will be done for the 4D case
and for the case of an orthogonal set {ei} mapping to a non-orthogonal set, {fi} – which is equivalent to finding the closest
orthogonal matrix to a given non-orthogonal matrix (so that its columns are the {fi}). Following the presentation of results by
Sarabandi & Thomas10, and in order to compare with their findings at some later stage, the generation of the 4 × 4 orthogonal
matrices to which noise is added follows the same procedure of doing this via sampling points on a 4-sphere (see below).
Using double precision arithmetic, we repeat the procedure outlined below for both uniform and gaussian noise. For the

uniform case, additive noise is taken from a uniform distribution in the interval [−a, a] with a in the interval [0, 0.1] with 100
intermediate noise levels. For the gaussian case, additive noise is taken from a normal distribution with zero mean and standard
deviation �, where again � takes 100 evenly spaced values between 0 and 0.1. The simulation then proceeds as follows:

1. Generate two sets of 100 quaternions, qr and ql using the ‘Method of choosing a point on the 4-sphere’ as presented in
Marsaglia11. This method chooses a point according to a uniform distribution on the surface of the unit 4-sphere.

2. Any 4D rotation (orthogonal) matrix can be written as a commutative product of two orthogonal matrices (see Cayley12,
Kim & Rote13). In geometric algebra terms, this involves splitting the bivector, B (such that, for example, the rotor R
corresponding to the rotation, can be written as expB) into commuting blades, B1 and B2 (B = B1 +B2), so that our two
commuting rotors are expB1 and expB2. In matrix terms this can be done by decomposing into right- and left-isoclinic
matrices as in Kim & Rote13. Since each of these commuting rotors or right- and left-isoclinic matrices can be written as
quaternions, it can also be said that any 4D rotation can be represented by a pair of quaternions or a double quaternion.
These double quaternions are then converted to 4D rotation matrices: create the 4D rotation matrix by writing it as a Van
Elfrinkhof matrix (Elfrinkhof14, Sarabandi et al15).
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3. Add uniform/gaussian distributed noise to each element of the 4D rotation matrices generated.

4. Compute the 4D ‘nearest’ rotation matrices using both the MATLAB16 in-built function for SVD and the CM method.
This is done using double precision arithmetic for both methods. For the rotor obtained from the CMmethod, also convert
to a rotation matrix.

5. Compute the maximum and the average squared Frobenius norm of the difference between the rotation matrices without
noise, and the obtained nearest rotation matrices from the SVD and CM respectively. The Frobenius norm is:

||A||F =

√

√

√

√

N
∑

i=1

N
∑

j=1
a2ij (25)

where aij is the ijth element of the matrix, and N is the matrix size, 4 in this case.

6. Compute the maximum and the average orthogonality error obtained using the nearest rotation matrices from the SVD
and CM methods; if R or R is the original rotor/rotation matrix, and R∗ or R∗ is the estimated rotor/rotation matrix, the
orthogonality error is given by:

||RR̃∗ − 1||F or ||RR*T − I||F (26)

Figure 5 shows the results for uniform noise – both the maximum and mean Frobenius norm (over 100 trials) are shown.
We see that the mean results are very similar, but note that the CM method produces a more variable maximum error for higher
noise levels. However, we see in figure 6 that the CM method produces a marginally ‘more orthogonal’ rotor.
Figures 7 and 8 show the equivalent results for gaussian noise where, again, the SVD produces a marginally better average

Frobenius error while the CM method is marginally more orthogonal.
We note that if single precision arithmetic is used the errors are significantly higher for the SVD method, but that the CM

method results are affected less.

FIGURE 5 The maximimum (left) and mean (right) Frobenius norm between the original (R) and estimated (R∗) rotation
matrices with the SVD and CM methods (over 100 trials), against noise level. x-coordinate indicates noise is taken from a
uniform distribution between [−x, x].
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FIGURE 6 The maximimum (left) and mean (right) orthogonality error between the original (R) and estimated (R∗) rotation
matrices with the SVD and CM methods (over 100 trials), against noise level. x-coordinate indicates noise is taken from a
uniform distribution between [−x, x].

FIGURE 7 The maximimum (left) and mean (right) Frobenius norm between the original (R) and estimated (R∗) rotation
matrices with the SVD and CM methods (over 100 trials), against noise level. x-coordinate indicates noise is taken from a
normal distribution with zero mean and standard deviation x.

6 CONCLUSIONS

As stated in the introduction, this paper was inspired by thework of Shirikov3 who essentially gave the rotor formula in equation 6
for restricted cases – our aim was to give a more general formulation, and a proof that required only a knowledge of basic
geometric algebra. We also took inspiration from the work of Sarabandi et al10 for an investigation into what the nature of the
characteristic multivector sum is when the start and end vectors are not related by a rotor.
Given any set of frame vectors {ei} (working in any dimension and any signature, provided no basis vector is null) and a set

of frame vectors {fi} which are related to the original frame via a rotor R, ie fi = ReiR̃, we have shown how to recover R via a
closed form expression (equation 6). Expressing orthogonal transformations as rotors provides us with a variety of possibilities,
such as defining fractional transforms by interpolating the rotor – some illustrative examples are given for the Haar and DCT
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FIGURE 8 The maximimum (left) and mean (right) orthogonality error between the original (R) and estimated (R∗) rotation
matrices with the SVD and CM methods (over 100 trials), against noise level. x-coordinate indicates noise is taken from a
normal distribution with zero mean and standard deviation x.

transforms. Finally, we note that if the {ei} and {fi} are not related by a rotor, the characteristic multivector (CM) formula still
gives a rotor in the Euclidean case. This rotor appears to be closely related to the UV T (or V UT ) construction obtained from
the SVD – in fact we believe that it is the optimal rotor obtained when minimising over the difference of all geometric objects
not just rotors. We also show that if we use the CM method to obtain the ‘closest’ orthogonal matrix to a noisy orthogonal
matrix, the CM performs marginally better (in terms of Frobenius norm and orthogonality measure) than the SVD under double
precision arithmetic. This is likely to be due to the difference between an iterative (SVD) algorithm and a closed form solution
(CM). The hope is that now this method has been shown to work in practice, more diverse applications will be found.

APPENDIX

A: Proof of equal numbers of commuting and anticommuting instances

We aim to show that for each basis element P in the N = 2n space, i.e. not just for even grade elements, then P commutes
with N∕2 elements and anticommutes with N∕2. The exceptions are for P being the scalar element, where it commutes with
all others, or for P being the pseudoscalar in a space with odd n, where again it commutes with all others.
Considering pseudoscalars first, then from considering passing an ej through I = e1 … en, then in a space with n even, even

grade blades commute with I and odd grade blades anticommute with I. Since there are the same number of even and odd grade
blades, this establishes what we want for the pseudoscalar in such a space.
For a space with n odd, it is easy to see that the pseudoscalar commutes with all elements, as stated above.
So now consider a non-pseudoscalar blade P in the N = 2n space. Since it is not a pseudoscalar, there must be at least one

vector element, ej say, which is not part of the blade. Now consider the reduction of the overall space to a space in which none
of the elements contain ej , together with its complement where all the elements contain ej . Call these spaces A and B; both A
and B have 2n−1 = N∕2 blades and together they make up the whole 2n space. By construction P ∈ A. The only thing we have
to guard against is whether it has now become the pseudoscalar of an odd n space. This could happen if the original space had
an even n and P was of highest odd grade. For the moment, let us suppose this is not the case. Now suppose that our theorem
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(that P commutes and anticommutes with an equal number of blades) is true for n − 1; P must therefore commute with N∕4
elements ofA and anticommute withN∕4 elements ofA. Call these subsetsA(1) andA(2) respectively. Since P does not contain
ej , then elements of the form ejA(1) will commute with P if P is even, and anticommute with P if P is odd. Similarly, elements
of the form ejA(2) will anticommute with P if P is even, and commute with P if P is odd. Thus, for P either even or odd, we
see that the subset B is divided equally into elements that commute and anticommute with P . If the theorem is true for n − 1 it
is therefore true for n as well.
The only thing to check is what happens if when reducing to the subspace not containing ej , then P becomes the pseudoscalar

of that space. As we have said, this can only happen if P is odd. In this case P commutes with all of ‘A’, which looks very
different to above. However, now all elements of the form ejA, i.e. all elements ofB, will anticommute with P , since all elements
of A commute with with P and ej anticommutes, since P is odd. Thus the same conclusion is reached, ie P commutes with
N∕2 and anticommutes withN∕2 elements in the 2n space, although it happens in a different way in this case.
It is trivially true for r = 2 since vectors (e1, e2) commute with the scalar and pseudoscalar/bivector (e1e2) elements and

anticommutes with the vectors, while the bivector commutes with the bivector element and anticommutes with the vectors –
thus we have things commuting with 2 elements and anticommuting with 2 elements of the space. If it is true for r = 2 it is then
true for all r.
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